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Abstract. We have studied the branched polymer model, situated on the Sierpinski gasket lattice. 
with competing monome-monomer and monomer-surface interactions. We have determined 
critical properties of this model within an exact renormalization group approach. Our results 
reveal that the corresponding model system possesses a rich phase diagam that is typical for 
polymer surface physics. 

Statistical properties of polymers in the vicinity of a surface have been intensively studied 
for both practical and theoretical reasons [ 1,2]. Linear chain polymers have been considered 
in most of the respective theoretical studies [3]. Lam and Binder [4] were, to our knowledge, 
the first who studied adsorption of branched polymers at surfaces. Using the Monte 
Carlo and scaling approaches, they found that there is much similarity in the behaviour 
of linear and branched polymers in the presence of an adsorbing substratum. Branched 
polymers appear to be difficult to study theoretically and it is hardly possible to achieve 
a meaningful exact solution. In this paper, we study the standard lattice animal model of 
branched polymers situated on the Sierpinski gasket (So) whose one boundary represents an 
attractive surface (see figure 1). Here, besides the surface-polymer interaction, we assume 
the presence of polymer self-attraction, in order to model the behaviour of a real polymer 
in a solvent. We have been able to solve this problem exactly within the renormalization 
group (RG) approach. In spite of the simplicity of the entire model, the results obtained 
demonstrate that the corresponding system displays rich critical behaviour that is typical for 
surface physics [5].  

In order to explore the full phase diagram of the polymer system, we introduce the 
three Boltzmann factors-w = exp(-el/T), U = exp(-cz/T) and t = exp(-c3/T)- 
that correspond to the three interaction parameters €1, €2 and €3. The effect of a poor 
solvent is taken into account through the attractive intaxtion energy €1 e 0 between 
two adjacent links (monomers) of a polymer configuration (see figure 1). Similarly, 
we associate the attractive energy €2 e 0 with each monomer lying on the adsorbing 
surface. Finally, I refers to the monomer-surface interaction for those monomers that 
are present in the layer contiguous to the surface (see figure 1). The thermal ,and 
geometrical properties of the model system can be deduced from the generating function 
C(x, w ,  U ,  I )  = CCt(N, M, K, L)xNwMuKIL ,  where Q ( N ,  M ,  K, L) is the number of all 
different configurations (per lattice'site) having N monomers, M of  which^& the nearest 
neighbours that contribute to the self-interaction energy M E !  of the system (see figure 1) 
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Figure 1. A schematic representation of a branched polymer mn6guration. situated on the 
so fractal, in the vicinity of an adsorbing surface (the crosshatched strip). The monomers are 
depicted by the solid links, and their mutual interaction is weighted by the Bollrmann factor w. 
For simplicity, we restrict this interaction to links within the first-onler triangles of the so Fractal. 
Accordingly, for instance, the AB monomer-monomer interaction is not present in our model. 
However, it Iums that this restriction d m  not affect the scaling laws that describe geometry 
and thermal properties of the polymer system [S, 91. The labels t and U denote Ihe Bolt" 
weighting facton of the monomer-surface interactions. 

while K and L represent the number of monomers lying on the surface and the number of 
monomers lying in the layer next to the surface, respectively. Here n denotes the standard 
monomer fugacity parameter. As in the case of regular lattices, we assume that the function 
G(n), for a given temperature T, has a power-law singularity G(n) - (1 - / L X ) ~ - ' ,  which 
Sets in when x approaches the critical value x, = l / p ( T )  from below. The critical exponent 
0 can take distinct values in different temperature regions, while the connectivity constant /L 
can be related to the polymer free energy per site through the relation f(T) = -T Inp(T). 

It may be expected that the essential physics of the model described can be summarized 
by the phase diagram depicted in figure 2. Indeed, the physical behaviour is determined 
by the competition of the two interaction parameters w and U. When both the monomer- 
monomer and surface-monomer interactions are small (w - 1, U - l), one can presume 
that the polymer resides in the extended states (random animal states). For relatively small 
values of U, increasing w should promote the appearance of collapsed branched polymer 
states (with a finite monomer density). On the other hand, increasing U, for a given w,  
should favour the binding of monomers to the surface (characterized by a finite fraction of 
adsorbed monomers, M / N  # 0). The reglons in the phase diagram, corresponding to the 
three different polymer states, should be separated by phase boundaries that can be assumed 
to meet at a multi-critical point (see figure 2). Our exact RG approach confirms the physical 
expectations arising from previous studies of linear polymers on fractal [6] and regular [71 
lattices. 

The generating function G(n, w ,  U, t )  can be expressed in terms of a finite number of 
restricted generating (partition) functions, whose definitions and recursion relations we are 
going to present in this paragraph. The schematic representations of the sixteen requisite 
restricted partition functions, that represent different polymer configurations, are given 
in figure 3. One should notice that the presence of the adsorbing wall necessitates the 
introduction of ten additional parameters bartition functions) in comparison with the case 
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Figure 2. The phase diagram of a branched self-amacting polymer situated on the so fractal. 
with one amactive bounday, in the space of the interaction parsmeters w and V.  The two 
buk phases (extended and collapsed) are separated from the bound-lo-surface phase by the 
line U =.us. This line merges with fhe extended-collapsed phase boundary (w = w d  at the 
multi-critical point 

in which one studies only the polymer bulk properties [8]. To write down the recursion 
relations for different parameters one has to look for all possible ways in which a given 
polymer configuration of the (r + 1)th-order fractal structure may be constructed from all 
possible polymer configurations that appear within the rth-order structure. Using the prime 
symbol as a superscript for the (r + 1)th-order parameters and no indices for the rth-order 
parameters, we present the following set of recursion relations 

A‘ = A ( 1 +  28 +2B2)  + 2CBz + F(A2 + Bz  + 2 B D )  

B ’ = B Z + B 3 + B F ( 2 A + 4 C ) +  F z ( B + D )  (2) 

c’ = B ~ ( A  + 3c) + F ( W D  + 7c2) + F ~ ( C  + E )  

E‘ = A3 + 14C3 + B(6AD -I- 12CD + 3 B E )  + F(3DZ + 3Cz + 1 2 C E )  

A{ = A + 2BAi + 2BBzAz + ZCB: + FE: + FA: + 2FBzDi 

(1) 

(3) 

D ’ = A Z ( l  + 2 B ) + B ( 2 D + 4 A C + 3 B 0 + 6 C Z ) + 2 F ( A D + B C + 2 C D + B E )  (4)  

(5 )  

(6)  

(7) 

F’ = F(3BZ + 6 C F  + Fz)  

A; = Az + BIAZ + AB2 + ABiBz + BBz(Ai + CI + Cz + Fd 

+ A A Z F I + D B Z F I + B F ~ D I  (8) 

(9) 

= E d +  B F i A z f  F M A I  + CI +Cz) +2CFiBz+ F F i ( B z + D i )  (10) 

(11) 

B; = Br + BE: +2ABiFi +2BFi(CI + Cz) + F:(B + D )  

C{ = AB: + CB; +2Bt(BCI + D F I )  f FCI+CFi(2Cz + 4 C 1  + F I )  + EF: 
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C;  = B B z A z + ~ B B I C Z + C B ~ + B F I D Z + F B Z D I  + 4 C F l C z + F ( 2 C i C z + C ;  

+ F I G +  FrEd (12 ) 

0; = (AA2 + BDi)(l+ B I )  + BAiAz + DBz+ BCiAz + 2CBzAi +BAzCz + DBIBz  

+ B B z D z + ~ C C I B Z + ~ C C ~ B ~ + D A ~ F I + F A I D ~ + F C Z B Z  

+ C F I B Z + ~ C F I D ~  + FCzDi + FClDt + E F i B z f  FEiBz (13) 

D; A Z + ~ A A Z B Z + ~ B I D Z  +4ABiCz + DB; +2BBzDi + 2BC; +4BCiCz +2AFiDz 

+ ~ B F I C Z  + 4 0 4  Cz + 28 Fl El (14) 

E! = ~ D B I C Z + ~ B D Z ( C Z + C I ) + ~ C B ~ D I  + 2 B B l E l +  EB;+ZDFlDz+ FDT 

f 2 C F i C z  + FC: +4EFiCz + 2CE1 FI + 2FEr (CI  + Cz) +2CF1 El +AA:  

+ ~ C C ; + ~ C C I C Z + ~ B A Z D ~  +2ABiD2+2DAzBz (15) 

F; = FE: + 2BB1 Fr + 2FF1 (Ci + Cz)  + 2CF: + FF:. (16) 

The above set of exact relations can be considered the RG transformations for the 
system under study. To perform the requisite numerical analysis, it must be supplemented 
by the appropriate initial conditions. In general, for this purpose we could adopt a set of 
sixteen independent parameters, with sixteen particular values, in order to explore the entire 
available phase space. However, to describe the simple adsorption of branched polymers, we 
find that the initial conditions (that correspond to the first-order so fractal) can be expressed 
in terms of only four independent parameters 

A = l  E = w3 BI = x v  D i =  w 

B = x  F = x 2 ( x + 3 w )  B 2 = x t  Dz = w 

c = x w z  Al = 1 c1 = xvwz  El = w3 (17) 

Fr = x2t (xv t  + tW + ~ I J W )  2 D = w  A2 = 1 c, = x t w  

where, for the sake of simplicity, we have omitted the superscript (1) associated with these 
first-order restricted generating functions. The above expressions spring from the possible 
polymer configurations which can be realized within the fractal unit triangle. For instance, 
Bi = x v  is the weight of that part of a polymer branch that traverses a unit triangle along 
its edge that lies on the attractive impenetrable wall, whereas B = x is the weight of the 
similar configuration within the bulk. 

Numerical analysis of RG transformations (lb(16) will reveal that there exist many fixed 
points that cannot be approached from the initial conditions (17), and, consequently, we have 
not found them to be relevant to the system studied (although, they might be of interest 
in the case of some similar model systems; for instance, one can choose initial conditions 
which would make it possible to reach fixed points that are relevant to the linear polymer 
problem). Besides, numerical analysis shows that it is necessary to assume that t c 1, since 
otherwise the polymer system always appears to be bound to the surface, as in the case of 
linear polymers [61. This may be explained in terms of two competing factors (energy and 
entropy) in the corresponding free energy of adsorption. In a regular lattice, adsorption is 
accompanied with a gain in the internal energy and a loss in the configurational entropy 
of the polymer in the vicinity of the impenetrable wall. However, in the case of fractals 
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numerous impenetrable walls are present (due to holes of all sizes) in the bulk as well, and 
the corresponding loss in entropy is of the same order as the loss caused by the adsorbing 
boundary wall. This brings about the situation in which an attractive boundary wall makes 
the energy term dominant, and thereby the polymer cham appears to be always adsorbed. 
Under these circumstances, a simple way to promote the appearance of the desorbed state 
is to introduce the repulsive part (€3 > 0, t c 1 )  of the monomer-wall interaction. In what 
follows we separate our discussion into three parts, according to the possible values of the 
monomer-monomer interaction parameter w (keeping t c 1 bed). 

(i) The first part of our discussion concems the weak monomer-monomer interactions 
(w - l), which corresponds to the swollen polymer phase [PI. To judge the adsorption 
state of the polymer, we need to know the ratio M / N ,  which can be expressed in terms of 
the critical fugacity xc = x,(w, U, I). The requisite expression is of the form [6] 

This formula allows us to find M/N by calculating xc. that is found as the maximal value 
of x below which iterations of (1H16) still converge. In this way, for small U, we have 
found that M / N  vanishes, whereas when U increases we cross the boundary us above which 
the adsorption order parameter M / N  takes finite values (see figure 2). For U slightly larger 
than U,, our calculations confirm the following scaling law 

M - N Q  (19) 

where 4 is the crossover exponent of the surface [3]. 
The critical properties of the polymers are described by three fixed points that correspond 

to tbe three consecutive cases of the surface-monomer interaction: v < U,, U = us and 
U > vs . The iterations of the set (1H16), for x = &(w, U, t),  reveal that some of the 
restricted partition functions diverge. By exploring numerically the’mode of their divergence 
(see, for example, [SI). we have found it convenient to introduce the change of variables 

x l = A F  x ~ = B  x3 = C F  x4 = D F ~  

xs = E F 3  xg = F X, = B1 xg = B2 

xg = Fi /F  XIO = A I F  XI] = A2F ~ 1 2  = C1 F 
(20) 

$13 = C2F x,4 = D ~ F ~  x , ~  = D ~ F ~  xI6 = E~ F3 .  

Of course, there are  many^ other changes of variables that move from the divergence 
of the RG parameters. Without rewriting our exact RG transformations in terms ,of (20). 
we quote the appropriate findings. In the case of weak monomer-monomer interactions 
(w < we. wc = 5.485 117), for U c U, and for a fixed t c 1, the relevant fixed point has five 
coordinates different from zero (x; = 0.200870, xz = 0.327604, n; = 0.023 100, nt = 
0.023238, x; = 0.002 198), and eleven equal to zero. This fixed point describes the 
extended states of branched polymer, with the single relevant eigenvalue A@) = 2.630 927 
and the concomitant critical exponent U = In2/ In A” = 0.716 552 for the gyration radius. 
These results are in agreement with those obtained in the study [8] of polymer bulk properties 

When the surface-monomer interaction parameter U increases, with t kept fixed, the 
critical fugacity x, does not change as long as U does not reach the phase boundary value 

only. 
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U, that corresponds to a given w. At U = U,, and x = x,, we find the tricritical ‘symmetric’ 
fixed point: x* 1 -  - x;,, = xrl = 0.200870. 4 = X; = x: = 0.327604, x; = xi2 = 
x ; ~  = 0.023 100, x: = xI14 = xTS = 0.023238, x; = x& = 0.002 198, X z  = 0, 1; = 1. 
The linearized RG transformations have two relevant eigenvalues at this fixed point. The 
larger eigenvalue AIE) coincides with the one already found in the bulk case (U c us), and 
thereby the corresponding critical exponent U remains unchanged. The smaller eigenvalue, 
A? = 1.828 169, determines (see, for example, [5]) the crossover exponent #I and the 
specific heat exponent a 

In A@) 1 
In he)  #I 

#I=- ‘ =0.62369 0!=2--=0.39664. 

Interestingly enough, this result lies within the limits, found phenomenologically [61 for 
linear polymers on fractal lattices in the presence of an adsorbing surface, 1 - u(df - d,) 6 
#I 6 d,/df,  where d f  and d, are, respectively, the fractal dimensions of the lattice and surface 
(in our case: df = In 31 In2 and d, = 1). 

U,, the polymer is globally adsorbed and we can expect that its critical 
properties will be described by a self-avoiding walk on a line. Indeed, in this case, we find 
the fixed point with X;  = 1 and x; 0 (i # 7), which means that only the surface polymer 
correlation function is different from zero (see (9) and (20), and figure 3). Accordingly, 
there is only one relevant eigenvalue ACB) = 2, implying U = 1. 

(ii) For U < U,, increasing w brings about the appearance of the collapsed polymer 
phase beyond the line w = wc = 5.485117 (see figure 2). which is characterized by a 
non-zero bulk monomer density. The critical properties of this phase are determined by 
the fixed point with coordinates x; = f i /30,  x; = 1/20, and x; = 0, for i # 3,s. At 
this fixed point, there is only one relevant eigenvalue A(c) = 3, that leads to the critical 
exponent v being equal to l/&, which is in agreement with [SI. In addition to the critical 
exponent v ,  we quote here our result for the critical exponent for the generating function 
G(x) ,  .9 = 1,535026. This (0 > 1) implies that G(x)  is singular, but not divergent, for 
x -+ x,. 

In the cases when w is fixed so that w > w,, increasing U leads the system to a line 
of points of continuous phase transitions, defined by U = U,. For U > U,, the system is in 
a bound state whose propeaies are of the type already discussed in this paper. However, 
at v = us, the behaviour of the system is govemed by a new ‘symmetric’ fixed point, with 
seven non-zero coordinates x; = xrz = xT3 = &/30, x; = xr6 = 1/20. x; = 1, x,* = 1. 
The two largest eigenvalues at this fixed point are Ah(c) = 3 and A;‘ = 2, so that 
the critical exponent of the gyration radius is the same as in the collapsed bulk phase 
U = In 2/ In 3 = l/&, whereas the critical exponent of the crossover #I, having the same 
value as U, coincides with the upper bound suggested by Bouchaud and Vannimenus [6]. 
However, in contrast to the linear polymer case [6], we have found no segment of the line 
U = us that corresponds to first-order phase transitions. 

(iii) The final section of our discussion of the model phase diagram concems the line 
w = wc and its merging with the line U = U,. The two lines merge at the multi-critical point, 
located at w = wc and U:) = 2.225427 (see figure 2). For U < u t ) ,  the bulk collapse 
transition is controlled by the tricritical fixed point: x i  = 0.059 164, x; = 0.075014, x; = 
0.125 260, x i  = 0.022503, x; = 0.047 351 and xf = 0 for i 2 6. Its relevant eigenvalues 

= 2.991 818 and A;’’ = 1.199411, which brings about a critical exponent of the 
gyration radius U, = 0.632 50 and the corresponding crossover exponent & = 0.165 92, 
in agreement with the previous study for U = 1 [SI. Furthermore, we have calculated the 

Finally, for U 

are , 
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Figure 3. Diagrams representing the sixteen mU’icted partition functions used to d + k  
the sntistics of a branched polymer silmted on ule SO fractal in the vicinity of an adsorbbg 
subsmlwn. The uiangls depict the so 7th-order triangle (the r = 1 order corresponds to the 
unit triangle. whereas the complete fractal lanice follows in the limit r -, a). The panunem 
F,, for insmce, represents the polymer configuration in the case when all Quet triangle vertices 
are connected, in conmt lo the situation described by El when the vertices are occupied but 
not mutually connected. In order lo clarify definitions of the restricted panition functions, we 
observe that the configuration depicted in figure 1 is of the Bf) type and its weight is given by 
Fc2) (B:” )2. 

corresponding critical exponent of the generating function 0, = 1.521 799, which, as in the 
collapsed phase case, implies that G(x)  is singular, but not divergent, for x + x,. 

The final point of the phase diagram to be discussed is related to the special pair 
of values (w = wc and U = U?’) of the interaction parameters. For these parameters, 
the RG transformations iterate towards the symmetric ‘adsorbed-collapsed’ fixed point: 

0.125260, x; = n& = x ; ~  = 0.022503, X; = x;~ = 0.047 351, x; = 0 and x: = 1. This 
is in contraSt to the linear polymer case [6], where the corresponding ‘adsorbed-collapsed‘ 
fixed point appears to be non-symmetrical. In our case, the Linearized RG nansfomations 
have two relevant bulk eigenvalues A)” = 2.991 818 and Ai” = 1.199411, and one 
additional surface eigenvalue A:@’ = 1.995542. Thus, the.critical exponent of the gyration 
U, at this multi-critical fixed oint, is, once again, determined by the largest bulk eigenvalue, 
that is v = U, = InZ/InA: ) = 0.63250. We calculate the crossover exponent using the 

x; = xyo = x;, = 0.059164, x; = X;  = xg = 0.075014, X; = xi2 x F ~  = 

B 
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standard formula 151, q4 = lnAL@’/ Inh?, whereby we find q5 = 0.630466. This result we 
confirmed by direct numerical calculation of the adsorption order parameter which behaves 
according to the power law M/N - (U, - U)(’-@)’@. It is interesting to note that the latter 
method was the only one by which q5 was estimated in the case of linear polymers, as the 
standard formula tumed out to be inapplicable [6] .  In addition, we observe that our result 
q5 = 0.630466 appears to be just slightly below the upper bound I/& = 0.630930 proposed 
in the same study of linear polymers 161. 

In conclusion, we have presented an exact study of branched polymers, situated on 
a fractal lattice, with competing monomer-monomer and monomer-surface interactions, 
which caused the simultaneous appearance of collapse and adsorption transitions. Most of 
our findings are in qualitative agreement with results found in the case of hear  polymers 
[6,7]. In particular, the general structure of the branched-polymer phase diagram is similar 
to the corresponding structure obtained for linear polymers. However, there are still some 
differences. For example, in contrast to the linear polymer m e  16.71, we have found 
that the collapse transition does not noticeably lower the adsorption temperature (see figure 
2). Furthermore, we found that the multi-critical fixed point is symmetric, whereas in the 
study of linear polymers [6] it was emphasized that the corresponding point should be 
asymmetric. The specific cause of the observed differences is not clear. Of course, if there 
was evidence that such differences do not exist in Euclidean lattices, we could ascribe them 
to the peculiarities of the underlying fractal lattices. However, we would like to speculate on 
the fact that, in our study, the polymer in the adsorbed state does not retain the topological 
structure it had in the bulk state, since we found that the bound phase is described by the 
fixed point for a one-dimensional self-avoiding walk. To vindicate this speculation, it would 
be desirable to perform a similar study for the three-dimensional Sierpinski gasket, in which 
case one could also expect a richer phase diagram. 

This work has been supported in part by the Yugoslav-USA Joint Scientific Board under 
project JF9M) 0, and by the Serbian Science Foundation under project 0103. 
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